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High School Statistics
and Probability

Overview
In high school, students build on knowledge and experience de-
scribed in the 6-8 Statistics and Probability Progression. They de-
velop a more formal and precise understanding of statistical infer-
ence, which requires a deeper understanding of probability. Stu-
dents learn that formal inference procedures are designed for stud-
ies in which the sampling or assignment of treatments was random,
and these procedures may not be informative when analyzing non-
randomized studies, often called observational studies. For example,
a random selection of 100 students from your school will allow you to
draw some conclusion about all the students in the school, whereas
taking your class as a sample will not allow that generalization.

Probability is still viewed as long-run relative frequency but the
emphasis now shifts to conditional probability and independence,
and basic rules for calculating probabilities of compound events. In
the plus standards• are the Multiplication Rule, probability distri-

• Additional mathematics that students should learn in order to
take advanced courses such as calculus, advanced statistics, or
discrete mathematics is indicated by (+).butions and their expected values. Probability is presented as an

essential tool for decision-making in a world of uncertainty.
In the high school Standards, individual modeling standards are

indicated by a star symbol ( ). Because of its strong connection
with modeling, the domain of Statistics and Probability is starred,
indicating that all of its standards are modeling standards.
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Interpreting categorical and quantitative
data
Summarize, represent, and interpret data on a single count or
measurement variable Students build on the understanding of key
ideas for describing distributions—shape, center, and spread—de-
scribed in the Grades 6-8 Statistics and Probability Progression.
This enhanced understanding allows them to give more precise an-
swers to deeper questions, often involving comparisons of data sets.

Shapes of distributions

Skewed left Skewed right The normal distribution is
bell-shaped

In Grade 6, students began to distinguish among distributions
that were skewed or approximately symmetric. In high school,
they distinguish among the latter, according to whether or not
they are approximately normal, that is approximately
bell-shaped.

Students use shape and the question(s) to be answered to decide
on the median or mean as the more appropriate measure of center
and to justify their choice through statistical reasoning. They also
add a key measure of variation to their toolkits.

S-ID.1 Represent data with plots on the real number line (dot
plots, histograms, and box plots).

In connection with the mean as a measure of center, the standard
deviation is introduced as a measure of variation. The standard
deviation is based on the squared deviations from the mean, but
involves much the same principle as the mean absolute deviation
(MAD) that students learned about in Grades 6-8. Students should
see that the standard deviation is the appropriate measure of spread
for data distributions that are approximately normal in shape, as the
standard deviation then has a clear interpretation related to relative
frequency.

The margin shows two ways of comparing height data for males

Comparing heights of males and females
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Heights of U.S. males and females in the 20–29 age group.
Source: U.S. Census Bureau, Statistical Abstract of the United
States: 2009, Table 201.

and females in the 20-29 age group. Both involve plotting the data
or data summaries (box plots or histograms) on the same scale, re-
sulting in what are called parallel (or side-by-side) box plots and
parallel histograms.S-ID.1 The parallel box plots show an obvious dif-
ference in the medians and the IQRs for the two groups; the medians
for males and females are, respectively, 71 inches and 65 inches,
while the IQRs are 4 inches and 5 inches. Thus, male heights center
at a higher value but are slightly more variable.

The parallel histograms show the distributions of heights to be
mound shaped and fairly symmetrical (approximately normal) in
shape. Therefore, the data can be succinctly described using the
mean and standard deviation. Heights for males and females have
means of 70.4 inches and 64.7 inches, respectively, and standard
deviations of 3.0 inches and 2.6 inches. Students should be able
to sketch each distribution and answer questions about it just from
knowledge of these three facts (shape, center, and spread). For ei-
ther group, about 68% of the data values will be within one standard
deviation of the mean.S-ID.2,S-ID.3 They should also observe that the S-ID.2 Use statistics appropriate to the shape of the data distribu-

tion to compare center (median, mean) and spread (interquartile
range, standard deviation) of two or more different data sets.

S-ID.3 Interpret differences in shape, center, and spread in the
context of the data sets, accounting for possible effects of ex-
treme data points (outliers).

two measures of center, median and mean, tend to be close to each
other for symmetric distributions.

Data on heights of adults are available for anyone to look up.
But how can we answer questions about standardized test scores
when individual scores are not released and only a description of the
distribution of scores is given? Students should now realize that we
can do this only because such standardized scores generally have
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a distribution that is mound-shaped and somewhat symmetric, i.e.,
approximately normal.• For example, SAT math scores for a recent
year have a mean of 516 and a standard deviation of 116.• Thus,
about 16% of the scores are above 632. In fact, students should be

• At this level, students are not expected to fit normal curves to
data. (In fact, it is rather complicated to rescale data plots to
be density plots and then find the best fitting curve.) Instead,
the aim is to look for broad approximations, with application of
the rather rough “empirical rule” (also called the 68%–95% Rule)
for distributions that are somewhat bell-shaped. The better the
bell, the better the approximation. Using such approximations is
partial justification for the introduction of the standard deviation.

• See http://professionals.collegeboard.com/profdownload/2010-
total-group-profile-report-cbs.pdf.

aware that technology now allows easy computation of any area
under a normal curve. “If Alicia scored 680 on this SAT mathematics
exam, what proportion of students taking the exam scored less than
she scored?” (Answer: about 92%.)S-ID.4

S-ID.4 Use the mean and standard deviation of a data set to fit it
to a normal distribution and to estimate population percentages.
Recognize that there are data sets for which such a procedure
is not appropriate. Use calculators, spreadsheets, and tables to
estimate areas under the normal curve.

Summarize, represent, and interpret data on two categorical and
quantitative variables As with univariate data analysis, students
now take a deeper look at bivariate data, using their knowledge
of proportions to describe categorical associations and using their
knowledge of functions to fit models to quantitative data.MP7, MP4

MP7, MP4 Looking for patterns in tables and on scatter plots;
modeling patterns in scatter plots with lines.The table below shows statistics from the Center for Disease

Control relating HIV risk to age groups. Students should be able
to explain the meaning of a row or column total (marginal), a row
or column percentage (conditional) or a “total” percentage (joint).
They should realize that possible associations between age and HIV
risk are best explained in terms of the row or column conditional
percentages. Are the comparisons of percentages valid when the
first age category is much smaller (in years) than the others?S-ID.5

S-ID.5 Summarize categorical data for two categories in two-way
frequency tables. Interpret relative frequencies in the context of
the data (including joint, marginal, and conditional relative fre-
quencies). Recognize possible associations and trends in the
data.HIV risk by age groups, in percent of population

Age 18–24 25–44 45–64 Row Total
Row % 14.0 59.6 26.4 100.0

Not at risk Column % 35.0 51.7 27.2
Total % 5.6 23.6 10.5 39.6
Row % 17.1 36.5 46.4 100.0

At risk Column % 65.0 48.3 72.8
Total % 10.3 22.0 28.1 60.4
Row % 15.9 45.6 38.5 100.0

Column total Column % 100.0 100.0 100.0 100.0
Total % 15.9 45.6 38.5 100.0
Source: Center for Disease Control,

http://apps.nccd.cdc.gov/s_broker/WEATSQL.exe/weat/freq_year.hsql

Students have seen scatter plots in Grade 8 and now extend that
knowledge to fit mathematical models that capture key elements
of the relationship between two variables and to explain what the
model tells us about that relationship. Some of the data should come
from science, as in the examples about cricket chirps and tempera-
ture, and tree growth and age, and some from other aspects of their

Cricket chirps and temperature
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Temperature_F = 25.2 + 3.29ChirpsPerSecond; r2 = 0.70

Crickets Chirping Scatter Plot

Source: George W. Pierce, The Songs of Insects, Harvard
University Press, 1949, pp. 12–21.

everyday life, e.g., cost of pizza and calories per slice (p. 6).
If you have a keen ear and some crickets, can the cricket chirps

help you predict the temperature? The margin shows data modeled
in a scientific investigation of that phenomenon. In this situation, the
variables have been identified as chirps per second and temperature
in degrees Fahrenheit. The cloud of points in the scatter plot is
essentially linear with a moderately strong positive relationship. It
looks like there must be something other than random behavior in
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this association. A model has been formulated: The least squares
regression line• has been fit by technology.S-ID.6 The model is used

• This term is used to identify the line in this Progression. Stu-
dents will identify the line as the “line of best fit” obtained by tech-
nology and should not be required to use or learn “least squares
regression line.”to draw conclusions: The line estimates that, on average, each added

chirp predicts an increase of about 3.29 degrees Fahrenheit.
But, students must learn to take a careful look at scatter plots,

as sometimes the “obvious” pattern does not tell the whole story,
and can even be misleading. The margin shows the median heights

Median heights of boys
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Source: National Health and Nutrition Examination Survey,
2002, www.cdc.gov/nchs/about/major/nhanes/
datatblelink.htm.

of growing boys through the ages 2 to 14. The line (least squares
regression line) with slope 2.47 inches per year of growth looks to
be a perfect fit. S-ID.6c But, the residuals, the collection of differences
between the corresponding coordinate on the least squares line and
the actual data value for each age, reveal additional information. A
plot of the residuals shows that growth does not proceed at a con-
stant rate over those years.S-ID.6b What would be a better description
of the growth pattern?

S-ID.6 Represent data on two quantitative variables on a scatter
plot, and describe how the variables are related.

a Fit a function to the data; use functions fitted to data to
solve problems in the context of the data.

b Informally assess the fit of a function by plotting and ana-
lyzing residuals.

c Fit a linear function for a scatter plot that suggests a linear
association.

It is readily apparent to students, after a little experience with
plotting bivariate data, that not all the world is linear. The figure
below shows the diameters (in inches) of growing oak trees at var-
ious ages (in years). A careful look at the scatter plot reveals some
curvature in the pattern,S-ID.6a which is more obvious in the residual
plot, because the older and larger trees add to the diameter more
slowly. Perhaps a curved model, such as a quadratic, will fit the
data better than a line. The figure below shows that to be the case.

Would it be wise to extrapolate the quadratic model to 50-year-
old trees? Perhaps a better (and simpler) model can be found by
thinking in terms of cross-sectional area, rather than diameter, as the
measure that might grow linearly with age.S-ID.6a Area is proportional
to the square of the diameter, and the plot of diameter squared versus
age in the margin does show remarkable linearity,S-ID.6a but there
is always the possibility of a closer fit, that students familiar with
cube root, exponential, and logarithmic functionsF-IF.7 could investi-

F-IF.7 Graph functions expressed symbolically and show key fea-
tures of the graph, by hand in simple cases and using technology
for more complicated cases.gate. Students should be encouraged to think about the relationship

between statistical models and the real world, and how knowledge of
Three iterations of the modeling cycle

Linear model: Age vs diameter
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quadratic model
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the context is essential to building good models.

Interpret linear models Students understand that the process of
fitting and interpreting models for discovering possible relationships
between variables requires insight, good judgment and a careful look
at a variety of options consistent with the questions being asked in
the investigation.MP6 MP6 Reasoning abstractly but quantitatively in discovering pos-

sible associations between numerical variables.Suppose you want to see if there is a relationship between the
cost per slice of supermarket pizzas and the calories per serving.
The margin shows data for a sample of 15 such pizza brands, and
a somewhat linear trend. A line fitted via technology might suggest
that you should expect to see an increase of about 43 calories if
you go from one brand to another that is one dollar more in price.
But, the line does not appear to fit the data well and the correla-
tion coefficient r (discussed below) is only about 0.5. Students will
observe that there is one pizza that does not seem to fit the pattern
of the others, the one with maximum cost. Why is it way out there?
A check reveals that it is Amy’s Organic Crust & Tomatoes, the only
organic pizza in the sample. If the outlier (Amy’s pizza) is removed
and the discussion is narrowed to non-organic pizzas (as shown in
the plot for pizzas other than Amy’s), the relationship between calo-

Pizza: Calories per slice vs cost
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Source: Consumer Reports, January 2002.

ries and price is much stronger with an expected increase of 124
caloriesS-ID.7 per extra dollar spent and a correlation coefficient of

S-ID.7 Interpret the slope (rate of change) and the intercept
(constant term) of a linear model in the context of the data.

0.8. Narrowing the question allows for a better interpretation of the
slope of a line fitted to the data.S-ID.8

S-ID.8 Compute (using technology) and interpret the correlation
coefficient of a linear fit.

The correlation coefficient measures the “tightness” of the data
points about a line fitted to data, with a limiting value of 1 (or -1)
if all points lie precisely on a line of positive (or negative) slope.
For the line fitted to cricket chirps and temperature (p. 4), the cor-
relation is 0.84, and for the line fitted to boys’ height (p. 5), it is
about 1.0. However, the quadratic model for tree growth (p. 5) is
non-linear, so the value of its correlation coefficient has no direct
interpretation.S-ID.8 (The square of the correlation coefficient, how-
ever, does have an interpretation for such models.)

In situations where the correlation coefficient of a line fitted to
data is close to 1 or 1, the two variables in the situation are said to
have a high correlation. Students must see that one of the most com-
mon misinterpretations of correlation is to think of it as a synonym
for causation. A high correlation between two variables (suggesting
a statistical association between the two) does not imply that one
causes the other. It is not a cost increase that causes calories to
increase in pizza, and it is not a calorie increase per se that causes
cost to increase; the addition of other expensive ingredients cause
both to increase simultaneously.S-ID.9 Students should look for ex- S-ID.9 Distinguish between correlation and causation.
amples of correlation being interpreted as cause and sort out why
that reasoning is incorrect (MP3). Examples may include medica-
tions versus disease symptoms and teacher pay or class size versus
high school graduation rates. One good way of establishing cause
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is through the design and analysis of randomized experiments, and
that subject comes up in the next section.
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Making inferences and justifying conclusions
Understand and evaluate random processes underlying statistical
experiments Students now move beyond analyzing data to mak-
ing sound statistical decisions based on probability models. The
reasoning process is as follows: develop a statistical question in
the form of a hypothesis (supposition) about a population parame-
ter; choose a probability model for collecting data relevant to that
parameter; collect data; compare the results seen in the data with
what is expected under the hypothesis. If the observed results are far
away from what is expected and have a low probability of occurring
under the hypothesis, then that hypothesis is called into question.
In other words, the evidence against the hypothesis is weighed by
probability.S-IC.1

S-IC.1 Understand statistics as a process for making inferences
about population parameters based on a random sample from
that population.But, what is considered “low”? That determination is left to the

investigator and the circumstances surrounding the decision to be
made. Statistics and probability weigh the chances; the person in
charge of the investigation makes the final choice. (This is much
like other areas of life in which the teacher or physician weighs
the evidence and provides your chances of passing a test or easing
certain disease symptoms; you make the choice.)

Consider this example. You cannot seem to roll an even number
with a certain number cube. The statistical question is, “Does this
number cube favor odd numbers?” The hypothesis is, “This cube
does not favor odd numbers,” which is the same as saying that the
proportion of odd numbers rolled, in the long run, is 0.5, or the
probability of tossing an odd number with this cube is 0.5. Then,
toss the cube and collect data on the observed number of odds.
Suppose you get an odd number in each of the:

first two tosses, which has probability 1
4 0�25

under the hypothesis;
first three tosses, which has probability 1

8 0�125
under the hypothesis;
first four tosses, which has probability 1

16 0�0625
under the hypothesis;
first five tosses, which has probability 1

32 0�03125
under the hypothesis.
At what point will students begin to seriously doubt the hypoth-

esis that the cube does not favor odd numbers? Students should
experience a number of simple situations like this to gain an un-
derstanding of how decisions based on sample data are related to
probability, and that this decision process does not guarantee a
correct answer to the underlying statistical question.S-IC.3

S-IC.3 Recognize the purposes of and differences among sam-
ple surveys, experiments, and observational studies; explain how
randomization relates to each.

Make inferences and justify conclusions from sample surveys, ex-
periments, and observational studies Once they see how prob-
ability intertwines with data collection and analysis, students use
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this knowledge to make statistical inferences from data collected in
sample surveys and in designed experiments, aided by simulation
and the technology that affords it.MP5, MP3 MP5, MP3 Using a variety of statistical tools to construct and

defend logical arguments based on data.A Time magazine poll reported on the status of American women.
One of the statements in the poll was “It is better for a family if
the father works outside the home and the mother takes care of
children.” Fifty-one percent of the sampled women agreed with the
statement while 57% of the sampled men agreed. A note on the
polling methodology states that about 1600 men and 1800 women
were randomly sampled in the poll and the margin of error was
about two percentage points. What is the margin of error and how
is it interpreted in this context? We’ll come back to the Time poll
after exploring this question further.

“Will 50% of the homeowners in your neighborhood agree to sup-
port a proposed new tax for schools?” A student attempts to answer
this question by taking a random sample of 50 homeowners in her
neighborhood and asking them if they support the tax. Twenty of
the sampled homeowners say they will support the proposed tax,
yielding a sample proportion of 20

50 0�4. That seems like bad news
for the schools, but could the population proportion favoring the tax
in this neighborhood still be 50%? The student knows that a second
sample of 50 homeowners might produce a different sample propor-
tion and wonders how much variation there might be among sample
proportions for samples of size 50 if, in fact, 50% is the true popula-
tion proportion. Having a graphing calculator available, she simu-
lates this sampling situation by repeatedly drawing random samples
of size 50 from a population of 50% ones and 50% zeros, calculating
and plotting the proportion of ones observed in each sample. The
result for 200 trials is displayed in the margin. The simulated values

Proportions in random samples of size 50
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Sample_proportion

Sample Proportions Dot Plot

at or below the observed 0.4 number 25 out of 200, or 25
200 0�125.

So, the chance of seeing a 40% or fewer favorable response in the
sample even if the true proportion of such responses was 50% is not
all that small, casting little doubt on 50% as a plausible population
value.

Relating the components of this example to the statistical reason-
ing process, students see that the hypothesis is that the population
parameter is 50% and the data are collected by a random sample.
The observed sample proportion of 40% was found to be not so far
from the 50% so as to cause serious doubt about the hypothesis.
This lack of doubt was justified by simulating the sampling process
many times and approximating the chance of a sample proportion
being 40% or less under the hypothesis.MP8 MP8 Observing regular patterns in distributions of sample statis-

tics.Students now realize that there are other plausible values for the
population proportion, besides 50%. The plot of the distribution of
sample proportions in the margin is mound-shaped (approximately
normal) and somewhat symmetric with a mean of about 0.49 (close
to 0.50) and a standard deviation of about 0.07. From knowledge
of the normal distribution,S-ID.4 students knows that about 95% of

S-ID.4 Use the mean and standard deviation of a data set to fit it
to a normal distribution and to estimate population percentages.
Recognize that there are data sets for which such a procedure
is not appropriate. Use calculators, spreadsheets, and tables to
estimate areas under the normal curve.

the possible sample proportions that could be generated this way
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will fall within two standard deviations of the mean. This two-
standard deviation distance is called the margin of error for the
sample proportions. In this example with samples of size 50, the
margin of error is 2 0�07 0�14.

Suppose the true population proportion is 0.60. The distribution
of the sample proportions will still look much like the plot in the
margin, but the center of the distribution will be at 0.60. In this case,
the observed sample proportion 0.4 will not be within the margin of
error. Reasoning this way leads the student to realize that any
population proportion in the interval 0�40 0�14 will result in the
observed sample proportion of 0.40 being within the middle 95% of
the distribution of sample proportions, for samples of size 50. Thus,
the interval

observed sample proportion margin of error

includes the plausible values for the true population proportion in
the sense that any of those populations would have produced the
observed sample proportion within its middle 95% of possible out-
comes. In other words, the student is confident that the proportion
of homeowners in her neighborhood that will favor the tax is be-
tween 0.26 and 0.54.S-IC.4 All of this depends on random sampling

S-IC.4 Use data from a sample survey to estimate a population
mean or proportion; develop a margin of error through the use of
simulation models for random sampling.because the characteristics of distributions of sample statistics are

predictable only if the sampling is random.
With regard to the Time poll on the status of women, the student

now sees that the plausible proportions of men who agree with the
statement lie between 55% and 59% while the plausible proportions
of women who agree lie between 49% and 53%. What interesting
conclusions might be drawn from this?S-IC.6 S-IC.6 Evaluate reports based on data.

Students’ understanding of random sampling as the key that al-
lows the computation of margins of error in estimating a population
quantity can now be extended to the random assignment of treat-
ments to available units in an experiment. A clinical trial in medical
research, for example, may have only 50 patients available for com-
paring two treatments for a disease. These 50 are the population, so
to speak, and randomly assigning the treatments to the patients is
the “fair” way to judge possible treatment differences, just as random
sampling is a fair way to select a sample for estimating a population
proportion.

There is little doubt that caffeine stimulates bodily activity, but
how much does it take to produce a significant effect? This is a
question that involves measuring the effect of two or more treatments
and deciding if the different interventions have differing effects. To
obtain a partial answer to the question on caffeine, it was decided to
compare a treatment consisting of 200 mg of caffeine with a control
of no caffeine in an experiment involving a finger tapping exercise.

Twenty male students were randomly assigned to one of two

Finger taps per minute in a caffeine experiment
0 mg caffeine 200 mg caffeine

242 246
245 248
244 250
248 252
247 248
248 250
242 246
244 248
246 245
242 250

Mean 244.8 248.3

Source: Draper and Smith, Applied Regression Analysis, John
Wiley and Sons, 1981

treatment groups of 10 students each, one group receiving 200 mil-
ligrams of caffeine and the other group no caffeine. Two hours later
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the students were given a finger tapping exercise. The response is
the number of taps per minute, as shown in the table.

The plot of the finger tapping data shows that the two data sets

Plot of finger tapping data

242 244 246 248 250 252 254

Taps

Finger Taps by Mg Dot Plot

Differences in re-randomized means for finger tapping data

tend to be somewhat symmetric and have no extreme data points
(outliers) that would have undue influence on the analysis. The
sample mean for each data set, then, is a suitable measure of center,
and will be used as the statistic for comparing treatments.

The mean for the 200 mg data is 3.5 taps larger than that for
the 0 mg data. In light of the variation in the data, is that enough
to be confident that the 200 mg treatment truly results in more
tapping activity than the 0 mg treatment? In other words, could
this difference of 3.5 taps be explained simply by the randomization
(the luck of the draw, so to speak) rather than any real difference in
the treatments? An empirical answer to this question can be found
by “re-randomizing” the two groups many times and studying the
distribution of differences in sample means. If the observed difference
of 3.5 occurs quite frequently, then we can safely say the difference
could simply be due to the randomization process. If it does not
occur frequently, then we have evidence to support the conclusion
that the 200 mg treatment has increased mean finger tapping count.

The re-randomizing can be accomplished by combining the data
in the two columns, randomly splitting them into two different groups
of ten, each representing 0 and 200 mg, and then calculating the
difference between the sample means. This can be expedited with
the use of technology.

The margin shows the differences produced in 400 re-random-
izations of the data for 200 and 0 mg. The observed difference of 3.5
taps is equaled or exceeded only once out of 400 times. Because the
observed difference is reproduced only 1 time in 400 trials, the data
provide strong evidence that the control and the 200 mg treatment
do, indeed, differ with respect to their mean finger tapping counts. In
fact, we can conclude with little doubt that the caffeine is the cause
of the increase in tapping because other possible factors should have
been balanced out by the randomization.S-IC.5 Students should be

S-IC.5 Use data from a randomized experiment to compare two
treatments; use simulations to decide if differences between pa-
rameters are significant.able to explain the reasoning in this decision and the nature of the

error that may have been made.
It must be emphasized repeatedly that the probabilistic reason-

ing underlying statistical inference is introduced into the study by
way of random sampling in sample surveys and random assignment
of treatments in experiments. No randomization, no such reasoning!
Students will know, however, that randomization is not possible in
many types of statistical investigations. Society will not condone
the assigning of known harmful “treatments” (smoking, for example)
to patients, so studies of the effects of smoking on health cannot be
randomized experiments. Such studies must come from observing
people who choose to smoke, as compared to those who do not, and
are, therefore, called observational studies. The oak tree study (p.
5) and the pizza study (p. 6) are both observational studies.

Surveys of samples to estimate population parameters, random-
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ized experiments to compare treatments and show cause, and ob-
servational studies to indicate possible associations among variables
are the three main methods of data production in statistical studies.
Students should understand the distinctions among these three and
practice perceiving them in studies that are reported in the media,
deciding if appropriate inferences seem to have been drawn.S-IC.3

S-IC.3 Recognize the purposes of and differences among sam-
ple surveys, experiments, and observational studies; explain how
randomization relates to each.
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Conditional probability and the rules of
probability
In Grades 7 and 8, students encountered the development of ba-
sic probability, including chance processes, probability models, and
sample spaces. In high school, the relative frequency approach to
probability is extended to conditional probability and independence,
rules of probability and their use in finding probabilities of compound
events, and the use of probability distributions to solve problems in-
volving expected value. As seen in the making inferences section
above, there is a strong connection between statistics and probabil-
ity. This will be seen again in this section with the use of data in
selecting values for probability models.

Understand independence and conditional probability and use
them to interpret data In developing their understanding of condi-
tional probability and independence, students should see two types
of problems, one in which the uniform probabilities attached to out-
comes leads to independence and one in which it does not. For
example, suppose a student is randomly guessing the answers to
all four true–false questions on a quiz. The outcomes in the sample
space can be arranged as shown in the margin.S-CP.1 Probabili-

Possible outcomes: Guessing on four true–false questions

Number
correct

Out-
comes

Number
correct

Out-
comes

Number
correct

Out-
comes

4 CCCC 2 CCII 1 CIII
3 ICCC 2 CICI 1 ICII
3 CICC 2 CIIC 1 IICI
3 CCIC 2 ICCI 1 IIIC
3 CCCI 2 ICIC 0 IIII

2 IICC

C indicates a correct answer; I indicates an incorrect answer.

S-CP.1 Describe events as subsets of a sample space (the set of
outcomes) using characteristics (or categories) of the outcomes,
or as unions, intersections, or complements of other events (“or,”
“and,” “not”).

ties assigned to these outcomes should be equal because random
guessing implies that no one outcome should be any more likely
than another.

By simply counting equally likely outcomes,

P(exactlyMP6 two correct answers 6

16

and
MP6 Attend to precision. “Two correct answers” may be inter-
preted as “at least two” or as “exactly two.”P(at least one correct answer 15

16
1 P(no correct answers �

Likewise,

P(C on first question 1

2
P(C on second question

as should seem intuitively reasonable. Now,

P (C on first question) and (C on second question) 4

16
1

4
1

2

1

2
�
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which shows that the two events (C on first question) and (C on sec-
ond question) are independent, by the definition of independence.• • Two events A and B are said to be independent if P(A P(B

P(A and B .
This, too, should seem intuitively reasonable to students because
the random guess on the second question should not have been
influenced by the random guess on the first.

Students may contrast the quiz scenario above with the scenario
of choosing at random two students to be leaders of a five-person
working group consisting of three girls (April, Briana, and Cyndi)
and two boys (Daniel and Ernesto). The first name chosen indi-
cates the discussion leader and the second the recorder, so order of
selection is important. The 20 outcomes are displayed in the margin.

Selecting two students from three girls and two boys

Number of girls Outcomes
2 AB BA
2 AC CA
2 BC CB
1 AD DA
1 AE EA
1 BD DB
1 BE EB
1 CD DC
1 CE EC
0 DE ED

Here, the probability of selecting two girls is:

P(two girls selected 6

20
3

10

whereas

P(girl selected on first draw 12

20
3

5
P(girl selected on second draw �

Because 3
5

3
5

3
10 , these two events are not independent. The

selection of the second person does depend on the selection of the
first when the same person cannot be selected twice.

Another way of viewing independence is to consider the con-
ditional probability of an event A given an event B, P(A|B), as the
probability of A in the sample space restricted to just those out-
comes that constitute B. In the table of outcomes for guessing on
the true-false questions,

P(C on second question | C on first question 4

8
1

2
P(C on second

and students see that knowledge of what happened on the first
question does not alter the probability of the outcome on the second;
the two events are independent.

In the selecting students scenario, the conditional probability of
a girl on the second selection, given that a girl was selected on the
first is

P(girl on second | girl on first) 6

12
1

2
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and
P(girl on second) 3

5
�

So, these two events are again seen to be dependent. The outcome
of the second draw does depend on what happened at the first
draw.S-CP.3

S-CP.3 Understand the conditional probability of A given B as
P A and B P B , and interpret independence of A and B as
saying that the conditional probability of A given B is the same as
the probability of A, and the conditional probability of B given A is
the same as the probability of B.

Students understand that in real world applications the proba-
bilities of events are often approximated by data about those events.
For example, the percentages in the table for HIV risk by age group
(p. 4) can be used to approximate probabilities of HIV risk with re-
spect to age or age with respect to HIV risk for a randomly selected
adult from the U.S. population of adults. Emphasizing the conditional
nature of the row and column percentages:

P(adult is age 18 to 24 | adult is at risk) 0�171

whereas

P(adult is at risk | adult is age 18 to 24) 0�650�

Comparing the latter to

P(adult is at risk | adult is age 25 to 44) 0�483

shows that the conditional distributions change from column to col-
umn, reflecting dependence and an association between age cate-
gory and HIV risk.S-CP.4, S-CP.5

S-CP.4 Construct and interpret two-way frequency tables of data
when two categories are associated with each object being clas-
sified. Use the two-way table as a sample space to decide if
events are independent and to approximate conditional probabil-
ities.

S-CP.5 Recognize and explain the concepts of conditional prob-
ability and independence in everyday language and everyday sit-
uations.

Students can gain practice in interpreting percentages and using
them as approximate probabilities from study data presented in the
popular press. Quite often the presentations are a little confusing
and can be interpreted in more than one way. For example, two data
summaries from USA Today are shown below. What might these
percentages represent and how might they be used as approximate
probabilities?S-CP.5

S-CP.5 Recognize and explain the concepts of conditional prob-
ability and independence in everyday language and everyday sit-
uations.

Top age groups for DUI
21–25 29%
26–29 24%
18–20 20%
30–34 19%

Use the rules of probability to compute probabilities of compound
events in a uniform probability model The two-way table for HIV
risk by age group (p. 4) gives percentages from a data analysis that
can be used to approximate probabilities, but students realize that
such tables can be developed from theoretical probability models.
Suppose, for example, two fair six-sided number cubes are rolled,
giving rise to 36 equally likely outcomes.
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Outcomes for specified events can be diagramed as sections of
the table, and probabilities calculated by simply counting outcomes.
This type of example is one way to review information on conditional
probability and introduce the addition and multiplication rules. For
example, defining events:

Possible outcomes: Rolling two number cubes

A is “you roll numbers summing to 8 or more”

B is “you roll doubles”

and counting outcomes leads to

P(A) 15

36

P(B) 6

36

P(A and B) 3

36
� and

P(B|A) 3

15
� the fraction of A’s 15 outcomes that also fall in B.S-CP.6

Now, by counting outcomes
S-CP.6 Find the conditional probability of A given B as the frac-
tion of B’s outcomes that also belong to A, and interpret the an-
swer in terms of the model.

P(A or B) 18

36

or by using the Addition RuleS-CP.7 S-CP.7 Apply the Addition Rule, P A or B P A P B
P A and B , and interpret the answer in terms of the model.

P(A or B) P(A) P(B) P(A and B)
15

36

6

36

3

36
18

36
�

By the Multiplication RuleS-CP.8
S-CP.8(+) Apply the general Multiplication Rule in a uniform prob-
ability model, P A and B P A P B A P B P A B , and
interpret the answer in terms of the model.

+

P(A and B) P(A)P(B|A)
15

36

3

15
3

36
�

The assumption that all outcomes of rolling each cube once are
equally likely results in the outcome of rolling one cube being in-
dependent of the outcome of rolling the other.S-CP.5 Students should

S-CP.5 Recognize and explain the concepts of conditional prob-
ability and independence in everyday language and everyday sit-
uations.understand that independence is often used as a simplifying assump-

tion in constructing theoretical probability models that approximate
real situations. Suppose a school laboratory has two smoke alarms
as a built in redundancy for safety. One has probability 0.4 of going
off when steam (not smoke) is produced by running hot water and
the other has probability 0.3 for the same event. The probability
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that they both go off the next time someone runs hot water in the
sink can be reasonably approximated as the product 0�4 0�3 0�12,
even though there may be some dependence between two systems
operating in the same room. Modeling independence is much easier
than modeling dependence, but models that assume independence
are still quite useful.
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Using probability to make decisions
Calculate expected values and use them to solve problems As+

students gain experience with probability problems that deal with+

listing and counting outcomes, they will come to realize that, most+

often, applied problems concern some numerical quantity of inter-+

est rather than a description of the outcomes themselves.MP1 MP2 MP1 Make sense of a problem, analyzing givens, constraints,
relationships, and goals.

+

Advertisers want to know how many customers will purchased their
MP2 Formulate a probability model for a practical problem that
reflects constraints and relationships, and reason abstractly to
solve the problem.

+

product, not the order in which they came into the store. A political+

pollster wants to know how many people are likely to vote for a par-+

ticular candidate and a student wants to know how many questions+

he is likely to get right by guessing on a true-false quiz.+

In such situations, the outcomes can be seen as numerical values+

of a random variable.• Reconfiguring the tables of outcomes for the
• Students should realize that random variables are different from
the variables used in other high school domains; random vari-
ables are functions of the outcomes of a random process and
thus have probabilities attached to their possible values.

+

true-false test (p. 13) and student selection (p. 14) in a way that+

emphasizes these numerical values and their probabilities gives rise+

to the probability distributions shown below.+

True–false test

Number
correct, X

Probab-
ility

0
1

16

1
4

16

2
6

16

3
4

16

4
1

16

0.10

0.20

0.30

0.40

-1 0 1 2 3 4 5 6

X

Number of correct answers Histogram

Selection of students

Number of
girls, Y

Probab-
ility

0
1

10

1
6

10

2
3

10

0.2

0.4

0.6

Y

-1 0 1 2 3 4 5

Number of girls Histogram

Because probability is viewed as a long-run relative frequency,+

probability distributions can be treated as theoretical data distri-+

butions. If 1600 students all guessed at all four questions on the+

true-false test, about 400 of them would get three answers correct,+

about 100 four answers correct, and so on. These scores could then+

be averaged to come up with a mean score of:+

0
1

16
1

4

16
2

6

16
3

4

16
4

1

16
2�

With the number correct labeled as X, this value is called the+

expected value of X, usually expressed as E(X). Anyone guessing at+

all four true-false questions on a test can expect, over the long run,+

to get two correct answers per test, which is intuitively reasonable.+

Students then develop the general rule that, for any discrete•
• Students need not learn the term “discrete random variable.” All
of the random variables treated in this Progression are discrete
random variables, that is, they concern only sample spaces which
are collections of discrete objects.

+

random variable X,+

E X (value of X)(probability of that value)

where the sum extends over all values of X.S-MD.2 S-MD.2(+) Calculate the expected value of a random variable;
interpret it as the mean of the probability distribution.

+
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For the random variable number of girls, Y, E(Y) = 1.2. Of course,+

1.2 girls cannot be selected in any one group, but if the group selects+

leaders at random each day for ten days, they would be expected+

to choose about 12 girls as compared to 8 boys over the period.+

The probability distributions considered above arise from theo-+

retical probability models, but they can also come from empirical+

approximations. The margin displays the distribution of family sizes

Empirical distribution of family size

Family
size

Propor-
tion

2 0.28
3 0.25
4 0.27
5 0.13
6 0.04
7 0.03

0.05

0.10
0.15

0.20

0.25
0.30

0 2 4 6 8

Family_size

Family Sizes Histogram

Source: U.S. Census Bureau, http://www.census.gov/
population/www/socdemo/hh-fam/cps2010.html; Table F1

+

in the U.S., according to the Census Bureau. (Very few families have+

more than seven members.) These proportions calculated from cen-+

sus counts can serve as to approximate probabilities that families+

of given sizes will be selected in a random sample. If an advertiser+

randomly samples 1000 families for a special trial of a new product+

to be used by all members of the family, she would expect to have+

the product used by about 3.49 people per family, or about 3,490+

people over all.+

Use probability to evaluate outcomes of decisions Students should+

understand that probabilities and expected values must be thought+

of as long-term relative frequencies and means, and consider the+

implications of that view in decision making. Consider the following+

real-life example. The Wisconsin lottery had a game called “Hot+

Potato” that cost a dollar to play and had payoff probabilities as+

shown in the margin. The sum of these probabilities is not 1, but

“Hot Potato” payoffs and probabilities

Payoff ($) Probability

1
1

9

2
1

13

3
1

43

6
1

94

9
1

150

18
1

300

50
1

2050

100
1

144000

300
1

180000

900
1

270000

For details about Hot Potato and other lotteries, see
www.wilottery.com/scratchgames/historical.aspx.

+

there is a key payoff value missing from the table. Students can+

include that key value and its probability to make this a true prob-+

ability distribution and find that the expected payoff per game is+

about $0.55.S-MD.5 Losing a dollar to play the game may not mean

S-MD.5(+) Weigh the possible outcomes of a decision by assign-
ing probabilities to payoff values and finding expected values.

+

much to an individual player, but expecting to take in $450 for ev-+

ery $1000 spent on the game means a great deal to the Wisconsin+

Lottery Commission!+

Studying the behavior of games of chance is fun, but students+

must see more serious examples such as this one, based on em-+

pirical data. In screening for HIV by use of both the ELISA and+

Western Blot tests, HIV-positive males will test positive in 99.9% of+

the cases and HIV-negative males will test negative in 99.99% of the+

cases. Among men with low-risk behavior, the rate of HIV is about+

1 in 10,000. What is the probability that a low-risk male who tests+

positive actually is HIV positive?+

Having students turn the given rates into expected counts and+

placing the counts in an appropriate table is a good way for them to+

construct a meaningful picture of what is going on here. There are

HIV testing expected frequencies

HIV+ male HIV- male Totals
HIV+ test result 0.999 1 1.999
HIV- test result 0.001 9,998 9,998.001
Totals 1 9,999 10,000

+

two variables, whether or not a tested person is HIV positive and+

whether or not the test is positive. Starting with a cohort of 10,000+

low-risk males, the table might look like the one in the margin.+

The conditional probability of a randomly selected male being HIV+

positive, given that he tested positive is about 0.5! Students should+

discuss the implications of this in relation to decisions concerning+

mass screening for HIV.S-MD.6, S-MD.7 S-MD.6(+) Use probabilities to make fair decisions (e.g., drawing
by lots, using a random number generator).

S-MD.7(+) Analyze decisions and strategies using probability
concepts (e.g., product testing, medical testing, pulling a hockey
goalie at the end of a game).

+
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Where the Statistics and Probability
Progression might lead
Careers A few examples of careers that draw on the knowledge
discussed in this Progression are actuary, manufacturing technician,
industrial engineer or statistician, industrial engineer and produc-
tion manager. The level of education required for these careers and
sources of further information and examples of workplace tasks are
summarized in the table below. Information about careers for statis-
ticians in health and medicine, business and industry, and govern-
ment appears on the web site of the American Statistical Association
(www.amstat.org/careers/index.cfm).

Education Location of information, workplace task
Actuary bachelors Ready or Not, p. 79; http://beanactuary.org/how/highschool/
Manufacturing technician associate Ready or Not, p. 81
Industrial engineer or statistician bachelors http://www.achieve.org/node/205

Industrial engineer; production manager bachelors http://www.achieve.org/node/620

Source: Ready or Not: Creating a High School Diploma That Counts, 2004, www.achieve.org/ReadyorNot

College Most college majors in the sciences (including health sci-
ences), social sciences, biological sciences (including agriculture),
business, and engineering require some knowledge of statistics.
Typically, this exposure begins with a non-calculus-based intro-
ductory course that would expand the empirical view of statistical
inference found in this high school progression to a more general
view based on mathematical formulations of inference procedures.
(The Advanced Placement Statistics course is at this level.) After
that general introduction, those in more applied areas would take
courses in statistical modeling (regression analysis) and the design
and analysis of experiments and/or sample surveys. Those heading
to degrees in mathematics, statistics, economics, and more mathe-
matical areas of engineering would study the mathematical theory
of statistics and probability at a deeper level, perhaps along with
more specialized courses in, say, time series analysis or categorical
data analysis. Whatever their future holds, most students will en-
counter data in their chosen field—and lots of it. So, gaining some
knowledge of both applied and theoretical statistics, along with ba-
sic skills in computing, will be a most valuable asset indeed!
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